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1. INTRODUCTION

This report addresses the problem of generating a surface-fitted grid in

a model fin-body problem consisting of a circular cylinder with four identical

symmetric fins attached. This grid is to be used in the calculation of

incompressible, laminar flow at moderate-to-high Reynolds numbers. The aim of

the calculation is to resolve the details of the separated zone at the leading

edge of the fin-cylinder juncture and the subsequent vortex that forms

downstream. Thus, the grid must have proper clustering so as to resolve the

regions of high flow gradients.

The approach used here is to generate the grid analytically but to

determine the metric coefficients numerically. Such an approach has been

pursued successfully by Jameson [1] and Caughey and Jameson [2-4] in solving

three-dimensional inviscid transonic flows about wing-body combinations. The

basic idea is to map the physical geometry to a strip of almost constant width

using a sequence of conformal transformations. Then boundary fitted

coordinates are generated by the application of a shearing transformation.

The result of the latter transformation is a nonorthogonal coordinate system

in the physical plane but one in which the nonorthogonality can be controlled.

The present work is an extension of the Jameson-Caughey technique for

what is called the wind tunnel problem to the case of an initial value plane

ahead of the airfoil. In order to treat viscous flow, clustering trans-

formations are used so that the computational grid is uniform in all three

directions.

One advantage of the present technique is that, owing to the simple

cylindrical body geometry, a three-dimensional grid is generated by stacking a

series of two-dimensional grids. Another advantage of the analytical approach

over the numerical solution of elliptic partial differential equations as a

IL, Per l"
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means of grid generation is its much greater speed which is especially

important for three-dimensional applications.

II. ANALYSIS

2.1 Geometry of Computational Domain

We start the grid generation analysis by defining the geometry about

which a surface fitted grid is to be generated and the extent of the

computational domain.

1. The body is an infinitely long, hollow circular cylinder of

radius Rc with its centerline parallel to the free-stream

velocity vector.

2. Four identical fins of constant unit chord and infinite span,

consisting of symmetric airfoil sections, are mounted on the

cylinder 90 degrees apart with their chord planes passing

through the cylinder axis.

3. The computational domain consists of the region interior to

an outer cylinder of radius Rt which encases the inner

cylinder and fins, bounded upstream and downstream by

planes normal to the cylinder axis.

A schematic of one fourth of the geometry and computational domain is shown in

Fig. I and a head-on view showing the coordinate system in the crossflow plane

appears in Fig. 2. Since the fins are identical and equally spaced, we have

four planes of symmetry, namely, at e 0 0, 1/4, 7/2 and 31/4. Thus, in the

flow field calculation for this model problem only the segment 0 4 e 4 w/4

needs to be considered.

wr'p 
'
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2.2 Sequence of Transformations

Four transformations applied in sequence are required to map the fin-

cylinder and surrounding computational domain into a rectangular

parallelpiped. Then a fifth stretching transformation is applied to adjust

the grid line spacings for proper flow field resolution in physical space and

to allow a uniform step size in all three computational coordinates.

We start by defining polar coordinates (r,O) in the crossflow plane, as

shown in Fig. 2, according to

r = (y 2 + z 2 ) 1 / 2
, (1)

0 tan-1 .[! " (2)

Thus, points in physical space are defined by standard cylindrical coordinates

(x,r,8).

Following Caughey and Jameson [2], the first transformation normalizes

(x,r,O) according to (all lengths are referred to the airfoil chord):

x x -d + In 2, (3)

_ r -Rc
Rt Rc (4)

6=46 , (5)

where ds is the location of the singular point of the unwrapping trans-

formation and is just inside the leading edge of the airfoil. Note that

in the above definitions, 0 4 r 4 1 and 0 4 it in the computational

domain. The upper limit on 9 is convenient in the next transformation.

46~ 1
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Because r = constant Is a surface fitted coordinate we need only generate

a surface fitted grid in the (x,O) plane. The geometry of an r = constant

surface in the computational domain is sketched in Fig. 3.

The conformal transformation

x - 0 = £n[I - cosh(& + in)] , (6)

applied to an r = constant surface unwraps the geometry in Fig. 3 to produce

the domain shown in Fig. 4. The minus sign has been used on the left in

Eq. (6) so that the upper symmetry plane maps to the positive C axis.

In the present problem initial conditions from an axis etric boundary

layer-potential flow composite solution are specified on tf 'lane x = - a.

This initial value line in an r = constant surface (IVL) is Dwn as line

segment ABC in Fig. 3. Under transformation (6), the IVL n - .o a near semi-

circle in the ( ,n) plane, as shown in Fig. 4. The airfoil image in this

plane is the arc DEF.

We next apply another conformal transformation to nearly straighten out

the IVL in Fig. 4. This transformation is

+ = + in + + i(7)

where o is the intersection of the IVL with the E axis (Point A in Fig. 4).

The conformal transformation (7) maps the upper and lower boundaries in the

C{,n) plane into slowly varying functions of in the (Fr) plane, as shown

in Fig. 5. We note that near Points A and C the IVL is now cusp-like.

Prow,
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The fourth transformation is a shearing transformation which straightens

out the upper and lower houndaries in the ({,n) plane. This transformation

Is

Y D (9)

Z r , (10)

where

D 5 D( ,r) = T- L , (11)

and jU and L are the ordinates, at a given , of the upper and lower

boundaries in the ( , ) plane.

Finally, to provide for clustering the grid lines near the fin and

cylinder surfaces to resolve the viscous layers there and to space lines

around the airfoil and in the wake as desired, we introduce one-dimensional

stretching functions as follows:

Xc = FI(X) , (12)

Ye = F2(Y) , (13)

Zc = F3 (Z) , (WA)

For the time being we leave F1 , F2 and F3 unspecified. Thus (Xc9 YC' Zc) are

the computational coordinates devised so that the step sizes LXc, AYc and

AZc are constants.

..... ..... ,_.- , - .: , a -- -
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2.3 Conformal Mapping Relations

Since the FORTRAN code is written in terms of real variables, the real

and imaginary parts of the conformal mappings must be determined. In

addition, the inverses of both mappings are needed because the grid generation

procedure requires being able to proceed from the (x,e) plane to the (Xc, Yc)

plane and then back to the (x,6) plane.

The real and imaginary parts of Eq. (6) yield the two relations:

cosh cos n = I - ex cos a , (15)

sinh sin n = ex sin 8 . (16)

The solutions for x and 6 are obtained by squaring (15) and (16), then adding

and making use of the ordinary and hyperbolic trigonometric identities. The

result for x, choosing the proper sign, is

x = Zn(cosh - cos q) , (17)

and 8 is obtained from Eq. (15), viz.,

cos- I c-ouh - Csj . (18)

To obtain the solutions for ( and n we first define,

p =1 e x cos , (19)

q = ex sin 8 . (20)

Following the same procedures as above, we eliminate n to obtain a quadratic

A.J
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equation for sinh2  which has the solution

sinh2 F [ (a2 + 4-2 )1/2 -(1

where

-2 -2 (2

BI- p -q (2

In the right half plane & is the positive root of Eq. (21). The expression

for n with the proper behavior (0 < n 4 r) is obtained from Eq. (15), viz.

=O- co 1 2 (23)

Next, the real and imaginary parts of Eq. (7) yield

1 1+ o2 (24)

n J E 2 + n2 (25)

We determine &, from Eq. (17) by setting x =-a -a + £n 2 and ni 0. The

The result is

o= coshf1(1 + 2e-a) .(26)

where a = ds + dVL.

To solve for and n~ in terms and n we return to the complex form which

is written as,

w =z + C02 (27)

-V.
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where

w = + in ,(28)

z = + in~ (29)

Solving Eq. (27) for z yields,

2 _ W2 &0 2 (30)
_4 ~

where

Z 2 ~- (31)

Let us now define

*=u + iv (32)

Then, combining Eqs. (28), (29) and (31) gives:

1-

V + v+ nr (34)

Now Eq. (30) ieads to the following relations:

uv q ,(36)

where

1 -2--2)-~(7
p *02 (37)n

I (38)

Equations (35) and (36) can be solved for u and v with the result:
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u 2 = + (39)

= ) (40)
2

where

= (p2 + 4q2)1/2  (41)

Then the final result for and n, combining Eqs. (33), (34), (39) and (40),

is

1 P ( + p)/2 (42)

_ - I - 1/2 (43)n n +p)I

2.4 Calculation of Shearing Boundaries

The shearing boundaries, which are straightened out by the shearing

transformation Eq. (9), are defined as nU( ) and %L(F). Thus U is the image

of the upper airfoil surface and the line e = 0 downstream of the trailing

edge while nL is the image of the upper half of the initial value line

(x= - a) and the line 7 = for x > - a.

We start by determining the image of the upper half of the airfoil in the

( ,r) plane. The airfoil will be given as a set of points (xF, YF)i where for

convenience we take the origin at the leading edge. Then the scaled airfoil

coordinates in the (x,U) plane, for a given r, are:

xF = xF + in 2 - d s , (44)

-~- OP ------- 4--
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= 4 sin-1  (45)

Next, the image in the ( ,n) plane is computed from

1 ]1/2

= sinh-1 [_ (a - a)1 , (46)

F cs Fcosh FJ (47)

where

-2 1/2 (8ct = (a 2 + 4q2) / 2  (48)

and p, q and a are given by Eqs. (19), (20) and (22). Then the image in the

( ,n) plane is

&F = F + ) , (49)

nU = nF(I ii) , (50)

and

0 2 
(51)

EF +nF

The upper boundary beyond the airfoil trailing edge is the image of 6 = 0

which maps to n = n. To calculate nU in this region we first compute a

uniform point distribution of on the interval (&TEtmax). Then

, - I , C, I III II ' " - I[ I lll. II I
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corresponding values of are computed by iteration from

-(n+l) - 1 (52)
1 + 1(

where superscript n denotes the iteration number, and

°2 
(53)

We note that Eq. (52) converges quite rapidly. With a value of known, rij

is computed from

U= (I - P) * (54)

In the calculation of the lower n boundary the shearing transformation

requires that the same distribution be used as was determined for rU. The

lower boundary is computed in two segments, the first on the interval (0, o),

where o is the image of Eo, and the second on the remaining interval

( omax)*

On the Interval (0,Eo ) we calculate and n by iteration from the

rapidly convergent formula:

+(n+l) E (55)
1+j

where In this case

( 2 + n2)(n) (56)

n = cos-1 (cosh (n) - 2e-a) (57)

To start the iteration we set u = 1 In Eq. (55) which from Eq. (56) is seen
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to be exact at C =Co With E and q known, nL is calculated from

nL = n - ) . (58)

On the interval (co, max) we know from Eq. (58) that the image of e =

is

nL = 0. (59)

Thus knowing the distribution of nU and nL on (0 , max ) we can obtain the

distribution of the shearing distance D from Eq. (11).

2.5 Stretching Functions

The approach taken here, as already mentioned, is to use one-dimensional

stretching functions, as indicated by Eqs. (12), (13) and (14). In the present

application the location and length scales of regions of rapid variation of the

solution are known beforehand. In a Z = constant plane of the computational

domain, as shown In Fig. 6, clustering of Y = consLant lines is needed near

Y = I and 0 to resolve the boundary layer developing on the airfoil and the

region around the corner singularity, x = - a , n = , in the physical plane.

Thus, for the variable Y a two-sided stretching function is required. Because

of the primary viscous layer on the cylinder clustering is needed near Z = 0

which requires a one-sided stretching function for Z. The stretching function

for X depends on criteria related to the flow field and the mapping geometry

which will be discussed later.

Vinokur [5] has determined approximate criteria for the development of

one- and two-sided stretching functions of one variable which give a uniform

truncation error independent of the governing differential equation or
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difference algorithm. He investigates several analytic functions but finds

that only tan z, where z is real or pure imaginary, satisfies all of his

criteria.

We start with the stretching function for Y and note that both Y and Yc

are normalized variables as required in Vinokur's functions. In the present

case, z is taken to be pure imaginary which leads to

sinh ~, tanh(YcA4) (60)

=A snh A + (1 - A cosh A ) tanh(YcA4)

where

A = (S 0 /Sl) 1 / 2
, (61)

B = (SSl) (62)

and So and S1 are dimensionless slopes defined as

SO c (0)
O dY

d, c 01dY

which control the clustering at Y 0 and Y = 1, and A is the solution of the

following transcendental equation:

B snh A (63)

To avoid solving Eq. (63) by iteration, Vinokur determines the following

extremely accurate approximate solutions for small and large B:

' " - -
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For B < 2.7829681

A = (6B)1 /2(I - 0.15B + 0.057321429B
2

- 0.024907295B
3 + 0.007742446iB

4

- 0.00107941238 5 ) , (64)

where

B= -1 . (65)

For B > 2.7829681

Aj = V + (0 + 1/V)Xn(2V) - 0.02041793

+ 0.24902722W + 1.9496443W2 - 2.6294547W 3

+ 8.56795911W 4  (66)

where

V = Zn B, (67)

and

W = 1/B - 0.028527431 . (68)

An example of this two-sided stretching function for So = 100 and S= 10 is

shown In Fig. 7. For this case, AO computed from Eq. (66) is 5.926.

The one-sided counterpart of Eq. (6) is antisymmetric about the mid-point

and, in terms of Z and Zc, is given by

tanh [ AO(Z c -1 )]
Z + 2 +O 0 4 Z 4 1 (69)tanh (69

2

L
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where AO is the solution of

sinh A4 (70)

and

_d7c

S0 = dZ- (0)

Two examples of this one-sided stretching function, So = 10 and 100, are shown

in Fig. 8.

The stretching function in x is required to have the following

properties:

(1) It must have the ability to cluster points near the nose of the

airfoil to resolve rapid flow field variations in that region.

(2) Control points, where grid lines are required, are the corner,

X = Xo , and the airfoil trailing edge, X = XTE.

(3) Downstream of the airfoil trailing edge where flow gradients

are decreasing the step size should gradually increase.

(4) The stretching function should have continuous first

derivatives.

(5) For proper flow field resolution, the number of steps on the

intervals (O,Xo ) and (XOXTE) are to he parameters.

The above requirements dictate the stretching function be made up of three

piecewise continuous segments on (O,Xo), on (XOXTE) and on (XTE,Xmax).

We start by defining variables normalized on the corner location,

X Xc

An appropriate stretching function on the first segment is given by Eq. (61) of

Vinokur, viz.
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X c [I + 1 (So - 1)(l - Xc)(2 - Xc)] , 0 < Xc  1 , (72)

where So is the slope at the origin and is used to control clustering of points

in that region. The uniform step size on Segment 1 is given by

AXc N (73)

where N1 is the number of Intervals on Segment 1. We note that AXc, as given

by Eq. (73), is also the step size on Segments 2 and 3.

On Segment 2, the scaled trailing edge coordinate is given by

(Xc)TE = 1 + N2 AXc (74)

where N2 is the number of intervals on Segment 2. We note that (X)TE ) XTE.

The constraints to be satisfied by the stretching function of Segment 2 are:

X = 1, = X' on Xc I

X =XTE on Xc = (Xc) TE

where

1 c IXc=l

which from Eq. (72) is

= -(3 (73)

With three constraints a parabola is appropriate. The resulting stretching

function is
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X = I + [X + A(Xc - 1)I(X c - 1) (77)

where

XTE - 1 - XI[(Xc)TE - I
A 2 (78)

[(Xc)TE - 112

On Segment 3 a geometric progression is used to increase the step size

in X. Requiring continuity of X at the junction with Segment 2, we have

k -1 1
Xk = XTE + AX1  , k > 2 (79)

where C is the constant step size ratio defined by,

- AXk
C >1I

AXk-1

Continuity of the first derivative at the junction is ensured by choosing AX1

equal to the last AX on Segment 2. No attempt is made to match Xmax exactly.

The stretching function for X is seen to have four parameters, So , N1 ,

N2 and C, which provide considerable flexibility in the point distribution of

X. A typical example is shown in Fig. 9.

r • "."
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3. RESULTS AND DISCUSSION

3.1 Generation of the Grid

The step-by-step procedure to generate a grid in the physical plane for a

given airfoil shape and initial value plane location is as follows:

(1) The uniform computational grid (Xc 'Yc.'Zc ) is first

established and then (Xi,Yj,Zk) are calculated via the

stretching functions described in Section 2.5.

(2) With (Xi Yj,Zk) known, rk is determined from

r= = Zk " (80)

Then for r fixed, the points in the (X,Y) plane are transformed

to the ( ,n) plane by

&ijk = Xi (81)

nijk = YjDik + ( nL)ik (82)

where

Dik = (nU)ik - (nLlik (83)

By Eq. (45), OF depends on r and hence r and therefore nL

and n must be computed anew for each value of r. The

procedure used here is to calculate more points than

needed on the shearing boundaries for a given r and then

to use Lagrange cubic interpolation to determine nL and

U for a given &.

,P-
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(3) With ( ,n) known, the transformation to the (Fr) plane is

^ /2

ijk 
= I Tijk + 172 (1 + 01 ijk (84)

1/2

S1 - + ^- -1 (85)
niJ k = T nijk +7 - ijk

where

(p2 4q ) /2 (86)

1 ( 2 - 2) - o2  ,( 7

q n (88)

(4) Next, the points in the (E,n) plane are transformed to

the (x,0) plane by

Xijk = n(cosh ijk - cos nijk) , (89)

r
9. =osl 11 - cosh ijk Cos nijk (90)

ijk s cosh ijk - Cos )ijk

(5) The final step is to compute the cylindrical coordinates of

each grid point from:

xijk = xijk + d, - Xn 2 (91)

I

Oijk = - 0ijk , (92)

rk =R + (Rt - Re)rk . (93)



-24- 30 March 1983
GHH: ihm

3.2 Features of the Grid

The shearing transformation applied at the fourth stage necessarily

produces a nonorthogonal grid in the (x,;) plane. The nonorthogonality is

smallest on the lower shearing boundary, under most conditions, and largest at

the airfoil surface on the upper shearing boundary, as can be seen from Fig. 5.

On the upper (airfoil) boundary the nonorthogonality near the leading edge

= ) can be controlled by proper location of the singularity of the

unwrapping transformation, Eq. (6). Away from the leading edge the only control

over nonorthogonality is to keep the airfoil reasonably thin, say eight percent

or less, which will maintain rjU as close to the image of n = i as possible.

The parameter which controls grid orthogonality near the airfoil leading

edge Is ds in Eq. (3). The most nearly orthogonal system in this region is

produced when the leading edge maps into an n = constant line. In the (x,8)

plane such a line is closely approximated by a parabola centered about 8 = 0 and

is effectively characterized by its radius of curvature at the origin, given

by

Po (94)

Id2x)

8=0

We determine p0 by setting n = riLE = constant in Eqs. (15) and (16),

differentiating the result twice with respect to e to find d2 x/d62 , plus noting

that dx/d5 = 0 at 8 = 0 and by virtue of Eqs. (3) and (5) that

d2 x d2x--- = 16 .
dO2 dO2
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The result is

I sin 2 )LE e-LE (95)
Po 16 cos 'ILE

From Eq. (3) evaluated at the airfoil leading edge (x = 0) we have

xLE = In 2 - ds  (96)

and from Eq. (17) with 0 and n = nLE we find that

cOs nLE = 1 - 2e
d s  (97)

from which it follows that

-d -d 1/2
sin nLE = 2[e-s(l - e s)] (98)

Hence, Eq. (95) for p. becomes

r e e-d s
P .. . ,1 (99)

= 2e-d s - 1

which can be solved for ds to yield,

r

I1 + 16 p,
d s = In + 8 (100)

Next, we fit the airfoil leading edge by an osculating parabola, viz.

x = K6 2  
(101)

2
where K = xi/6 i and (xi,e i ) are appropriate airfoil coordinates near the

leading edge. The radius of curvature of the airfoil at the leading edge is,

from Eq. (101),
2

I- =  "(102)
0 'i
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The optimum value of ds (which produces the most nearly orthogonal grid near

0) is obtained by equating PLE and po. Thus, ds can then be determined

from Eq. (100). Figure 10 shows the variation of nU with for a six percent

thick Joukowsky airfoil for three values of ds , one of which was determined by

Eqs. (100) and (102). In these three cases, we have ds << dL which has the

effect of limiting the influence of d. on nU to the region 0 4 where here

0.87. As r increases from Rc to R. the leading edge radius of curvature

of the airfoil decreases because OF decreases--see Eq. (45). Thus ds must be

decreased accordingly.

On the lower shearing boundary the nonorthogonalicy arises from the

mapping of the initial value line (IVL) by Eq. (7). In the (E,n) plane the IVL

is very nearly half of an ellipse with the ratio of the semi-major to

semi-minor axes lengths, defined as X = no/ o (no is the value of n on the IVL

at = 0) given by

= cos-(l - 2e-a) (103)

cosh-'(1 + 2e- a)

Figure 11, in which A is plotted versus "a", shows that as "a" becomes large

X approaches unity and therefore the IVL approaches a semi-circle in the (E,n)

plane. Thus for r, to have the smallest maximum (at 0) and hence for

constant lines at n = 9L to be as nearly orthogonal as possible, "a" should

be large, say 3 or 4, a circumstance desirable on physical grounds anyway.
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At the image of the airfoil trailing edge in the ( ,n) plane (Points D

and E in Fig. 5) when the trailing edge angle is finite the derivative of nU

with respect to will be discontinuous. At the ends of the IVL (Points A and

C in Fig. 5) the behavior of nL is cusp-like which means that the second

derivative of nL with respect to is discontinuous. These discontinuities

produce similar type discontinuities in Y = constant lines via the shearing

transformation. This behavior is one of the disadvantages of algebraic

mappings involving shearing transformation which is absent in grids generated

by solving elliptic partial differential equations. The discontinuous behavior

of derivatives of Y = constant lines in the physical plane should therefore be

accounted for in the calculation of affected metric coefficients and in the

numerical method of solution of the viscous flow equations.

3.3 Numerical Examples

For simplicity a symmetric Joukowsky airfoil was used in the numerical

examples of the grid. The ordinates of this airfoil (for unit chord) are

given by,

14T 1/2
YF = ( - XF)[ 4 xF(l - XF)] (104)

where xF is measured from the airfoil leading edge and T is the maximum

thickness to chord ratio. Two example grids in the (x,6) plane are presented

with parameters listed in Table 1 below. The parameter J is the number of

points in the Y direction.

LW
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Parameter Case I Case 2

N I  15

N2  --- 15

J 31 31

dIvL 3.0 3.0

d s  0.05 0.05

dOB 3.0 3.0

0.12 0.06

Rc  1.0 1.0

Rc  1.0 
1.0

SO  10 10

S1  10 10

SO --- 0.2

C 1.2

Table 1. Grid parameters for Numerical Examples

Case I is shown in Fig. 12 and Case 2 in Fig. 13. Case 1 has no stretching

function in X and no X = constant line through the corner. The non-

orthogonality of the grid in Case 1 (12% thick) is seen to be more pronounced

at the airfoil surface than in Case 2 (6% thick) which bears out the remark

made earlier. Notice that both examples are for the grid in the (x,e) plane

on the cylinder surface (r = Rc) which corresponds to the intersection of

the fin with the cylinder. Hence in these examples, by Eq. (45), the airfoil

thickness in terms of 6 is a maximum and thus the nonorthogonality is most

pronounced.

The computer code listing is given in the appendix.

.1"
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10 C PROGRAM NAME: CGNID3 ll:li

20 C THIS PfROGRA,4 ciJm&urkS A SURFACE FITTED C-GRIC FOR A FIN
30 C CYLINuiER BODY.
40 C THE FIN IN THIS VERSION 15 A SYMMETRIC JOUKO*SKy AIRFOIL.
50 C THIIS IS THE 3-D VERSION.
60 C*~;*;;*#*$I#**************;;****
70 IMPLICIT REAL*8 (A-H,O-Zl)
s0 COmMON /bLKUI/ IMAX,JMAX,ITE,ITEM,ILAST,ISEG1,ISLG2
90 COMMONJ 16LK021 XIbM,XIOpXIdO

100 C0;4AON IBLK031 Cl,C2,C3,C4,C5,PI,PISJ
110 COM4MON /oLK0O'/ XFCIO1)sYFU1O1)
120 COMMON /6LAO~S/ XIb(i51),,bbAR(l51),ETA4LC151)
130 COMMON /BLKO6/ SYO,SYI,SZO,SXU,SSR
140 COMMUN /8LK07/ ZC(1S1),b1GZ(151)
150 C
160 1 FORMAT(5I4)
170 2 FORM'AT(5F10,4)
ISO 10 FORMA-r(iHi,4X,'INPUT PARAMLTEPS FOR C-GRID')
190 11 FORMAT(1h0,9X,'ISEGl ='vI6/10X,'iSEG2 ',Ilb/IOX,'JMAX ml
200 116/IQX,'KMAX ='16/1OX,'ITE =0,16)
210 12 k*OHMATU0%X,'DlVL =',FlO*4/1OX,'0t5 =',FIU*4/
220 IIOX,'TAU =',FlO.4/lUX,'kC =l,FIO.4/I0X.'RT =l,F1O.4/lOX,
230 21SYO =',FlO.4/1VXp'SYl =I,F1O.4/IOX,ISZO =',F1O.4/10X,'SXO s
240 3F1lU.4/lOX,'SbR =lF1U.4)
250 13 FORM AT(IHO)
260 14 FOkMAT(5X,'STACKED C-GRID FOR FIN-CYLINDER GLOMETRYI)
270 to FORt4AT(IUX,'LjS =fru14.4)
280 C
290 C INP'UT kEUIREMENTS
300 C
310 C ISEGI = NO. INTERVALS UN FIRST X-SEGMENT.
320 C ISEG2 = NO, INTERVALS ON SECOND X-SEGMENT.
330 C IMAX =NG, POGINTS INi X.UIRE.CTION.
3140 C JMAX = NO, V OINTS IN i-DIRECTIO..
350 C KMAX = NO. PO0INTS IN Z-OIRECTION.
360 C ITE =NO* POINTS ON hIRFUIL INITIALLY.
370 C DIV. a ISTAMC. FROM AIR~FOIL LEe To INITIAL VALUE LINE.
380 C us = DISTANCE FROM AIRFOIL L,.E. TO SINGULARITi OF
390 C COORDINATE SYSTEM.
400 C DGM : DISTANCE FROM AIRFOIL, £E, TO OUTF'LON BOUNDARY,
410 C TAU = AIRFOIL MAX* THICKNESS TO CHORD RATIO,
420 C PC = iNNEk CYLINDER kADIUS, IN TERMS or' AIRFOIL CHORD,
430 C RI = OUrEk CYLINDER RADIUS, IN TERMS OF AIRFOIL ChOkD.
440 C SYO 2 Y-STRE-rCHING PARAMETER Ar AIRFOIL SURFACE.
450 C syl = Y-STRETChtING PARAm~rtiR AT INITIAL SURFACE.
460 C SZO 3 Z-STNETCmING PARAMLTER AT INNER CYLIN06R.
47(? C sxO a INITIAL A-STRETCHING PARAMETER, SEGti6NT 1,
49Ui C SS?% = XwcaEOUMETRIC PRUGRESSION RATEIOp SEGmENT 3.
490 C
S00 READ(5,1) IStG1,ISEG2,JMAX,KMAX,ITL
510 READ(5,2) DIVL,DUB
520 READ(5,2) TAU,PC,PT
530 READ(5,2) SY(),SYI,SZU.SXO,SSR
540 ITEMMITE'1
550 WRIrE(b,10)
560 WRIT6(6,11) ISEG1,ISKG2JMAX0XMAX,XTE
570 wRITE(6, 12) DIVL,Dod,TAURC,RT,SY0,SY1 ,SZOSXOSSR
580 *RITL(b,13)
590 WRITE(6,14)
600 C
610 C3-2OL)O*TAU/DSQRT(27,ODO)
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620 P1=3,1415926535897900
630 PISQ=Pli;Pi
640 XE1.Qouo+DO8
650 C
660 C CALCULATE AIRFOIL COORDIN4TES.

680 C CALL FOIL
60 C

700 C CALCULATE ZC AND BIGZ,
71
720 CALL STRFZCZC,BIGZIKAAX,SZO)
730 DELR=RT-RC
740 C
750 C BEGIN CALCULATION OF STACKED GRID,
760 C
770 DO 50 K:1,KMAX
790 RAL)RC.I.OLR*BIGZ(K)
790 C
900 C CALCULATE DS - DISTANCE FROM AIRfrOIL LEADING E2DGE TO
810 C SINGULARIUt OF' UN'WRAPPING TiRANSFORMATIUN.
820 C
030 THe:DASINCYF(4)/RAD)
840 RHO=0.5D02PTHF*TIIF/XF(4)
d50 DS=DLOGC(1.000+1b.OD0*HHO)/(l.UDO+8.000*H$O))
860 WRITE(6,13)
870 wRITE(o.15) DS
B80 wRITE(6,13)
890 CiDnEXP(-(DIVL*DS))
900 C2=2,OUO*C1
910 RH SDQT(4,UDO4*C14'C1.DO+C1))
920 CALL ASINHi(XIO,RHS)
930 C4=DLOG(2.ODU)-DS
940 C5=XIO*XIO
950 XIB0=2.oDO*XIo
960 C
970 C CALCULATE XIOM - COORDINATE OF DOWNSTREAM BOUNDARY IN XI BAR
980 C ETA BAR PLANE.
990 C
1000 XBe=XE.+C4
1010 TERM=0EXPCX8k.)-1.00
1020 RHS=USURTCTEiRM*TERM-l.0D0)
1030 CALL A5INH(XlE,RMS)
1040 Xlbm=XIE;Cl.ODO+C5/(PISQ+XIE*XIE))
1050 C
1060 CALL SHEAR(RAD)
1070 IKK
1080 CALL XTGRID(KKRAD)
1090 50 CONTINUE
1100 Stop
1110 END
1120 SUBROUTINE SHEAR(RAD)
1130 *****;*;************w****;**;*;*s.
1140 C THIS SUBROUTINE CALCULATES SBAN VS, XI BAR, TU Bk. USED IN THE
1 150 C SHEARING TRANSFORMATION*
1160 ***#**;;,****#* .. s;s...s*.;.**s*;
1170 IMPLICIT REAL*b (A-H,O-Z)
1180 COMM UN /BLKO1/ IMAXJMAXITEITEM,ILAST,ISEG1,ISEG2
1190 COMMON /BLKO2/ XlbMrXIOXIb0
1200 COMMON /BLK03/ CI,C2,C3,C4tCSPl,PISQ
1210 COMMON /BLKO4/ Xu(101).iFc101
1220 COMMON /bLKOS/ XIB(151)oSbAR(151)vETABL(1S1)



-46- 30 March 1983
GHH: llhm

1230 C
1240 DIMENSION ETABU(151)
1250 C
1260 10 FORMAT(SX,'SHEARING BOUNDARY IN XIBAiR - ETABAR PLANE')
1270 11 FORMATC1IS0)
1280 12 FORMAT(5X.'1',OX,'XI8AR,9X,'ETA6L',9X,'ETABU',9X,'SBAR')
1290 13 FORM4AT(I6,4D14,4)
1300 14 FORMAT(1a10,4X,'UNA8LE TO CONVERGE XI IN 50 ITERATIOhl~S/5X,
1310 11XIBAR =0,014.4)
1320 C
1330 C cof4pun NORMALIZED AIRFOIL COORDINATES FUR GIVEN CYLINDRICAL
1340 C RALUIUS AND TRANSFORM TO XI BAR - ETA BAR PLANE. THIS STEP
1350 C GIVES THE FIRST Pumaoh UF THIE UPPER 8OUthDARY,
1360 C
1370 WRITE(b,11)
1380 wRITE(6,10)
1390 WRITE(6,11)
1400 T1=RAU*RAD
1410 DO 50 IlI,ITE
1420 YFI=YF(I)
1430 THF=DASIN(YFi/RAD)
1440 XBFI=Xt'(I)+C4
1450 TrIBFI=4ODO*THF
14b0 C
1470 T2=DEXP(XBFI)
1480 P8AR:1.OD0mT2*DCUS(THBFI)
1490 OBAR=T2*I)SIN(TH~kIJ
1500 QStU=W8AR$0bAR
1510 bETA1l.0D0-PdAR*FBAR-GQ
1520 ALPHA=US0RT(dETA*EETA+4.0D0*QSQ)
1530 RHS=LI3QRT(0.500*(ALPHA-fsETA))
1540 CALL ASINH(XIFRHS)
1550 ARG=PBAR/DCOSH(XIF)
1560 TIF(CARG+1.ODu) .LT.U.0D0) ARG=-1.ODO
1570 ETAFMOACOSCAAG)
1580 C
1590 XMU=C5/(XIF*XIF'+LTAF*ErAF)
1600 Xlb(I)=XIF*(1.ODO+X4U)
1610 ETABU(I)=ErAF;(1.0D0-XAU)
1620 50 CONTINUE
1630 C
1640 C CONTINUE UPPk.R HUUNDARY CALCULATION BEYOND AIRFOIL T.E.
1650 C TO XIBM,
16b0 C
1670 DXIBZ0.2D0
1680 ILAST2ITE+(XIBM-XI8(ITE))/DXlB
1690 IF(ILAST.Gr.151) ILAST=1b1
1700 IL=T~
1710 WRITE(b,i2)
1720 DO 100 IuITEP,ILAST
1730 XIBAR=XlbCI-1)4DXIB
1740 XIOCI):XIBAR
1750 XILZXIBAN
1760 DO 70 ITX1,50
1770 XmUxC5/CWISGpXIL*XIL)
1780 Xlzx1dAR/(1.0DOtXMU)
1790 IF(DAhSCXI-XIL).LT..D-08) GO TO 80
1800 70 XILUXI
1810 WPITE(6,14) XIBAN
1820 STOP
1030 80 KTABUCI)uPI*C190DO-XMU)

A*1
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1840 100 CONTINUE
1850 C
1860 C CALCULATE LOWER BOUNDARY IN XI BAR -ETA BAR PLANE AND
1670 C SOAR,
1880 C
1890 DO 200 ImI,ILAST
1900 XIBAR=XIBCI)
1910 IF(XIBAR.GE.AI80) GO TO 140
1920 XIL:XIBAR
1930 XMU=1.000
1940 DO 120 I1=1,50
1950 XI=XIdAP/(1.0D0+AMU)
1960 ARG:VCUSti(XI)-C2
1970 kETA=)ACOS(ANG)
1990 XmUaC5/(XI;XI+ETA*ETA)
1990 IF(DA8S(XI-XIL).LT.1.0D-U8) ',0 TO 130
2000 120 XIU=XI
2010 WRITE(b,14) XIHAR&
2020 STOP
2030 130 bETABL(I)=ETA*C1.0U0-XMU)
2040 GO TO 150
2050 140 ETABLCI)=O.0D0
2060 150 SBAA (I )=CTA8U (I)-ETABL(I)
2070 wRITE(b,13) I,XIB(I),ETABL(I),ETABJ(I) ,SBAR(I)
2080 20U COtirINUE
2090 RETURN
2100 E-10
2110 SUaRUUTINE X'GRID(K,RAD)
2120 C*$*****$*** ******* *** *******;
2130 C THIS SUbKOUTJE~ CALCULATES THlE GRID IN THE X8AN THETABAR
2140 C PLANE,.
2150 C****;$;*4***s**s;**;,*s,;.s
2160 IMPLICIT HbAL*9 (A-H,O-Z)
2170 COMMON /BLKOI/ IMAX,JMAX,ITEITEM,ILAST,ISEGI,ISEG2
2180 COMMON /bLi(02/ X1~'4,XI0,XIdO
2190 COMMLJN /OLlK03/ C1,C2,C3,C4,C5,PI,PISQ
2200 COMMON /8LK0b/ XI8(151),86AR(1S1),ETABL(151)
2210 COMM~ON /bLK06/ SYO.SY1,SZ0,SX0,SSA
2220 COMMOaN /8LK07/ ZC(151)oSIGZ(151)
2230 C
2240 DIMENSION 81GX(151),bIGY(151)
2250 DIMENS10N XC(151),YC(l5l)
2260 C
2270 11 FORMATIiHO)
2280 12 FORtAT(SX,I',5X,'J',SX,'1',6X,'XC' ,12X,'YC' ,12X,'ZC' ,12X,
2290 1 'R' ,IJX,'X' ,13X, 'THETA')
2300 13 FORMAT(316b6V14.4)
2310 C
2320 C SET UP GRID IN CUM'PUTATIUNA 4 PLANE,
2330 C
2340 XBTEZXIS(IIE)
2350 WPTE=IbEGl*I5EG2+1
2360 CALL STRFX(XC,BIGXISEG1 ,ISEG2,IMAXSX0.SSH,XIB0,XBTE,XIBM)
2370 CALL SIRFYCYCobIGY,JMAX,SYO,SYl)
2380 C
23190 C DETERMINE GRID IN PHYSICAL PLANE,
2400 C
2410 121

2430 3912SOAR(1)
2440 LTISLIxETAbL(1)

-2 2 - *- 
*- A b.*. q 

__
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2450 WRirE(6,11)
2460 w~lTE(o,12)
2470 WRITE(o,11)
2480 DO 70 J=1,JN AX
2490 ETA8ARHTHLI+SBI*bIGY(J)
2500 P=.25UTAEAi3A*ETAAR+C5
2510 X10.oLou
2520 ETA=.b00TA8AhARDDSHT(R)
2530 XBARD0b0G(l.0D0-0COS(ETA))
2540 TrIbAR=0.0D0
2550 XX=X6AR-C4
2560 TH9/A=O.000
2570 WRITE(6,13) I,JK,XC(I) ,YC(J) ,ZC(K) ,RAD,XX,THETA
2580 70 CONTINUE
2590 IBEG1l
2600 IEiiD=ITE
2610 DO 100 I=2,IMAX
2620 XIbAIGX(I)
2630 IF(I.LE.NPTE) GO TO 80
2640 I8EG=ITE
2650 IEND=ILAST
2660 C
2670 C INTERPOLATE TO FIND SBAR AND ETABL CORRESPONDING TO XIBAR.
268U C
2690 80 CALL INTERP(XIB,SBAR,XLSAR,SBI,IBEG, lEND1 INT,0)
2700 CALL INTE P(XIB,ETABL,XIBAR,ETbLI ,IBEG, IEID, INT, 1)
2710 C
2720 WiRITE(6,11)
2730 RTb,2
2740 WRITEC6,11)
2750 DO 100 J-1Djmhx
2760 ETABAR=ETBLI+SBI*BIGY(J)
2770 Q=U,25U0*XIBAk*ETABAR
2780 P=0S25U3;(XIAK*XItIAR-ETABAR*ETABAR)-CS
2790 XA4U=DSQRT(hPP4.UD0P*a;U)
2800 XI=0.5D0;XIBAR+DSQRT(0.bV0;(XMU+P))
2810 ETAz0.5D0*ETABAR+DS0I. i0.5D0*CXMU-P))
2820 C
2630 T1ODCOSHCXI)
2840 T2=DCUSCE.TA)
2850 ARG1=T1-T2
29*0 XBAR=DLOG(ARGI)
2870 THBAR=L)AC0S(C1.OD0-T1;T2)/ARG1)
2890 TH6TA=0.25D0*TH8AR
2690 XX2XBAiF-C4
2900 WRITE(6,13) I,J,tK,XC(I) ,YC(J) ,ZC(K),RAD,XXTHETA
2910 100 CONTINUE
2920 RETURN
2930 E4
2940 SUBROUTINE ASINH(ARG,RHS)
2950 C***~*~;;;***$.*;*;*;******9*,;
2960 C TIS SUBROUT1NE C014PUTES THE: INVERSE HYPE~RBOLIC SINE USING
2970 C IJKWTON'S METHOD,
2980 c;;;#***;u****;*;ss.*e*;;*;*.,*;*
2990 IM4PLICIT HEAL*6 (A-I4,O-Z)
3000 C
3010 10 roKlAATClh0,4X,lINVEK.SE HYPERBOLIC SINE CALCULATION FAILED FOR
3020 ISINII(X) 219D14.7)
3030 C
3040 TESTUDABSCRHS)
3050 IF(TE5TGT.1.0D0) GO TO 30
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3060 ARG=RAS
3070 GO TO 40
3080 30 ARG=DL.OG(2.ODO*TkLST)*DSIGN(1.ODO1RHS)
3090 40 CONTINUE
3100 DO 50 K=:1,50
3110 FA=DSIN(ARG)-RHS
3120 FPA=IJCUS~H(ARG)
3130 DAcG=-kA/FtA
3140 IF(DAbS(0ARG) .LT. 1 .O-1(J) RKTURN
3150 ARG=ARI+DAtRG
3160 50 CONTINUE
3170 WRITE(6,10) kHS
3180 RETURN4
3190LI
3200 SUBRUUTINE FOIL
3210 C*$. *;$$***;;***;#*$***#
3220 C THIS SUB3ROUTIN~E GENERATES (X,Y) COORDINATES FUR A SYHMTRIC
3230 C JOUKUWJSIY AIRFOIL,
3240 C~s$**#
3250 IOJtLICIr REAL*8 (A-HpO-Z)
3260 COAM Ul /BLKOI/ IMAX,JMAX,ITE,ITENI.ILASTISEGI,ISEG2
3270 COMMON /ELi(03/ CIDC2,CJ,C4,C5,PI,PISUI
32RO CO~mON /BLi(04/ XF(101)pYF(l01)
3290 C
3300 10 FOt8MAT(5A,'AlHFUIL COORDINATE;S')
3310 11 FORMAT(IIHO)
3320 12 f'0R4AT(5X,'I' ,aX,'XF' ,13X.'YF')
3330 13 FOaVMAT(16,2D14.4)
3340 C
3350 VH~kI/ITEM
3360 XF(1)=0.0D0
3370 YF(1)=0.0D0
3380 DO 50 I=2,ITEM
3390 Td=(I-1)*DTH
3400 TI=DCOS(TH)
3410 XF(I):U.SDO*(l.ODO-TX)
3420 YFCI)=CJCI,0D0+T1 )$DSIN~(TH)
3430 50 CU14TINUE
3440 XFCITtE)=l.0D0
3450 YFCITE)=0.ODO
34(*0 W'RITE~b,11)
3470 WRITE(6,10)
3480 WRITE(0,11)
3490 *RITE(0,12)
3500 DIO 60 1=1,ITe.
3510 50 WRITi(6,13) l,XF(1),YFCI)
3520 RETUR.N
3530E 10
3540 SUBROUlINE IITERP(XX,YY,XINT,YINT,IBEGIlEND, INT,ISW)

3560 C THIS SUBROUTINE USES LAt~kAN(E CUBIC INTERPOLATION TO
3570 C DETER41INE YIrNT FOR A GIVLN XINT,
3580 C
3590 C XX z IIaDEPENDENT VARIAOLE.
3600 C yy z DEPENDENT VARIABILE.
3610 C 1k3EG =IN4ITIAL INDEX FOR~ INTERPOLATION RANGE*
3620 C lEND u FINJAL INDEX FOR IlTERPOLATION RANGE,
3630 C INT = UPPER INDEX OF INTER(POLATION INTERVAL*
3640 C !So a INTERPOLATION INTERVAL SEARCH SOITChe
3650 C 0 PERFORM SEARCh.
3660 C 1 OMIT SEARCH,

Jew=p



-50- 30 March 1983
CHN: I lm

3670 C*****ss*s.;;**,;s***.~s.~*s*~.*
3680 IMPLICIT REAL*8 (A-H,U-Z)
3690 C
3700 DIMENSIJN XXC151),YY(151)
3710 C
3720 IF(ISo.GT.0) Gu TO 75
3730 60 00 70 I=IBEG,ILJU
3740 INT=I
3750 IFCXX(I).GT.XINT) GO TO 75
3760 70 CONTINUE
3770 75 IF(INT.EQ,(IbEG+1)) GO TCO 80
3780 IF(INTE:Q.IEND) GO TO 90
3790 ll=1hT-2
3800 12=INT-1
3810 13=IiYT
3820 14=IhT+1
3830 GO TO 100
3840 90 I13EG
3850 12=1btrG+1

3870 14=IBEG+3
3880 GO TO 100

3900 12=1EtiD-2
3910 13=1ENDO-1
3920 14=IEND
3930 100 CONTINUE
3940 X1=XX(Il)
3950 X2=XX(12)
3960 X3=XXCI3)
3970 X4=XXC14)
3980 CFI1(XINsT-X2)*(XINT-X3)*(XINT-X4)/( CX1-X2)*(X1-X)*(XI-X4))
3990 CF2=(XINT-X1)*CXINT-X3)P(XINT-X4)/CCX2.Xl)PCX2-X3)(X2.X4))
40u0 CF=XN-l*XN-2*XN-4/(3X)(3X)(3X)
4010 CF4=(XlNTmX1)*CXINT..X2);(XINT-X3)/( (A'-Xl)*(X4-X2);(X4-X3))
4020 YINT=CF1*YYCI1)+CF2*YYC12),*CF3*YY (13)+CF'4*YY(I4)
4030 RETURN
4040 END
4050 SUBROUTINE S~Hk7Y(XI ,T,NPT,SYO,SYI)
4060 C****$$*******~*~$$****$*
4070 C THIS SUBROUTINE GENERATES A NONUNIFORM PUINT DISTRIBOTION
4060 C USING VINOKURS TWO-SIDEi) STRETCH1ING FUNCTIONp AS GsIVENJ IN,
4090 C NASA CR-3133.
4100 C*~*;*
4110 IMPLICIT RtEAL*8 (A-Hf,O-Z)
4120 C
4130 DIMENSION XI(151),T(151)
4140 C
41S0 C COMPUTE XI*
4160 C
4170 DXIuI.ODO/(NPT-1)
4190 DO 4U J=l,NPT
4190 40 XI(j)=(J-1)*DXI
4200 C
4210 C COMPUTE DELTA Y,
4220 C
4230 AxDSQRT(SYO/SYI)
4240 BxDSORTCSYO*SYI)
42b0 TESTu2,7829661DO
4260 ir(R.GT.TEST) GO TO 50
4270 YBAR8B-1.or)0
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4280 DELY2((C((-0.001079412300*YBAR+0.0077424461D0)*YBAR
4290 1-0.024907295D0)*YBAR+O.057321429D)*YBAR.0. 15D0)*YBAR
4300 2+1.OD0J*vSURTcb.OVo*YBAk)
4310 Go TO bu
4320 50 VZDLOG(t6)
4330 WX1.0DU/8-0.028527431DO
4340 DhLLY=( C(8.56795911D0**-2.629454700)*W+l .949644iD0)*W
4350 1+0.249U2722D0)#W-O.02041793D0.V+(1 .ODO+I..ODO/V)*
4360 2DLOG(2,000*V)
4.J70 60 CONTINUE
4380 C
4390 C COMPUTE T.
4400 C
4410 C1=A*DSINH(DELY)
4420 C2=1.0D0-A*DCOSH(DE 5 Y)
4430 rDo 70 1=1,NPT
4440 11=DTANHCDKLY*XI(I))
4450 T(I)Fiq/CCI+C2*FN)
4460 70 CONTINUE
4470 RETURN
4480 END
4490 SUBROUTINE STPFX(XI,T,NSEG1 ,NSEG2,NMAX,SX0,SSR,XIH0,XBTE,XIBM)
4500
4510 C THIS SUB~ROUTINE GENERATES A NONUNiIFORM POINT DISTRIBUTION~
4520 C SPt.CIALIZED TO THE COORD)INATE ORAPPED AROUINO THE AIRF~OIL,
4530
4540 ImlPLICIT RkLAL*u (A-H,O-Z)
4550 C
4560 DIMENSION XI(151),TC151)
4570 C
4580 C SEGMENT NUIMBER 1,
4590 C
4600 TTE=XBTK/XIBO
4610 TMAX=XI'dM/XIbO
46b20 DXI=1l0DO/NSLG1
4630 NPI1NSEG1.l
4640 Sl=O*00*)O(SX0-1.0D0)
4650 Do 50 I=1,NP1
4660 XX=(l-1)$DXI
4670 XI(I)=XX
4680 50 T(I)=XX*(i.0V0,+Sl*Cl.0DO-XX)*c2.0DO-XX))
4690 C
4700 C SEGM4ENT NUMBER 2.
4710 C
4720 AA=0.500*(3*ODO-SXO)
4730 XWTE=NSEG2*DAI
4740 BBu(TTE-1.0D0-AA;XmE)/(XWTE*XwK)
4750 NP2=NSEG2+1
4760 DO 60 K.=2,NP2
4770 I=iiSEGI(

4790 XI(I)=I.ODO+Xw
4800 60 T(I):1.0D0+XW*CAA+X*8bi)
4V10 C
4820 C SEGMENT NUMBLP 3.
4b30 C
4840 N3:NSEGI+NSEG2
4850 NP32N3+1
4860 XITEzXI(NP3)
4070 LT11(tdP3)-T(N3)
480 fi1=0Tl/(SSR-1.0D0)
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4890 KMAXINP3
4900 DO 70 K=2,KMAX
4910 I=N3+K
4920 XI(I)=XITE+(KI-)DXI
4930 TI=TTh;>lS1(SSP**(K-2)-1 .OfO)
4940 T(I)=TI
49b%0 IF(T1.(JE.TMAX) GO 10 BU
4960 70 CON4TIN1UE
4970 80 NMAX±i
4980 C
4990 C RESCAIJE VARIAbLES,
5000 C
5010 SCALE=XBTE/XlTE
5020 DO 90 I=1,NMAX
5030 XI(I)=SCALE*XI(I)
5040 90 T(I)=XId0*T(l)
5050 RETURN
5060 ENL)
5070 SUBROUTINE STRFZCXI,TNPT,SO)
5080 c*ss.**ss;ss.*s.*, ********8sss.****
5090 C THIS SUdR0UTdtjE GENERATES A NONUNIFORM POINT DISTRIBUTION USING
5100 C VINOKURS ONE-SIDED STRETCHING FUNCTIUN.
5110
5120 IMP-LICIT REAL*8 (A-l4,U-Z)
5130 C
5140 DIME~NSION XI(lbl),T(151)
5150 C
5160 C COP4PUIL xil
5170 C
5180 DXI~1.0Uo/NVrT-1)
5190 DO 40 K=1,NPT
5200 40 XI(K)=(K-1)*UXI
5210 C
5220 C COMPUTE DELTA Y,
5230 C
5240 TEST=2,7829681D0
5250 IF(SOGT.TEST) GO TO 50
5260 YBAR=S0-1*0D0
5270 UEY(((001742U*BR007446D)YA
5280 1-0.024907295U)*I--ARei0.057321429D0)*YBAR-O, bD0) *YaAR
5290 2+1.0D0)*L)SQFT(6.0DQ*YBAR)
5300 GO TO 60
5310 50 V=VLOG(SO)
5320 W:1.ODQ/SO-0.028b274J1D0
5330 DELY=(( (8.56795911DO*W-2.6294547D0).w+1.9496443D0)*w
5340 1+0.2490272200)*h-U. 02U41793D+V.( 1 ODO+Il ODO/V)*
5350 2DLOG(2.ODO*V)
5360 60 CONTINUEZ
5370 C
5380 C COMPUTE T.
5390 C
5400 C1:0.5D0*DELY
5410 C2=1,0D0/o'IA4H(C1)
54*20 Do 70 I(:1,NPT
5430 TCK)=1.0Do*+C2*vTANHCCc1;(xzcK)-1.oDo))
5440 70 CONTINJUE
5450 RETURN
5460 END
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